skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Congdon, Victoria M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seagrasses are long-lived, clonal plants that can integrate fluctuations in environmental conditions over a range of temporal scales, from days to years, and can act as barometers of coastal change. There are many estimated seagrass traits and ecosystem parameters that have the potential to reflect ecosystem status, linking seagrass condition to natural and anthropogenic drivers of change. We identified five seagrass indicators and seven metrics that are suitable, affordable and frequently measured by 38 monitoring programs across the Gulf of Mexico (GoM). A specific set of ratings and assessment points were formulated for each measurable metric. We determined metric ratings (Acceptable, Concerning, Alarming) and validated assessment points using long-term monitoring data from Texas and Florida, coupled with existing literature and input from a panel of seagrass biologists. We reported scores using a blue-gray-orange (Acceptable-Concerning-Alarming) scale to summarize information in a format accessible to the public, resource managers, stakeholders, and policymakers. Seagrass percent cover, shoot allometry and species composition were sensitive indicators of large-scale climatic disturbances (droughts, hurricanes). Severe drought led to reductions in total seagrass cover and leaf length in Upper Laguna Madre, Texas, and Florida Bay; however, Syringodium filiforme was disproportionally affected in Texas while Thalassia testudinum beds responded strongly to drought impacts in Florida. Hurricanes Harvey (TX) and Irma (FL) also resulted in loss of seagrass cover and diminished leaf length in the Texas Coastal Bend and Florida Keys; both storms largely impacted T. testudinum and to a lesser extent, S. filiforme. Many of the metrics within these affected bays and basins received either a “Concerning” or “Alarming” rating, driven by the impacts of these disturbances. Our proposed indicators serve as a tool to evaluate seagrass condition at the bay or basin scale. Moreover, the indicators, metrics, and assessment points are amenable to large-scale evaluations of ecosystem condition because they are economically feasible. This framework may provide the foundation for a comprehensive assessment of seagrass status and trends across the entire GoM. 
    more » « less
  2. Coastal ecosystems display consistent patterns of trade-offs between resistance and resilience to tropical cyclones. 
    more » « less
  3. Abstract At least 18 major storms have struck the Gulf of Mexico and Caribbean in the past 50 yr including Hurricane Harvey, a Category 4 storm that passed over extensive seagrass beds in the western Gulf of Mexico and became the second‐most expensive U.S. hurricane. We sought to identify the effects of an extreme hurricane on sediment physicochemical characteristics and seagrass species with contrasting life histories and morphologies. Surprisingly, Harvey's intense wind speeds resulted in decreases in blade length, vegetative cover, and greater overall loss ofThalassia, a persistent climax species relative toHalodule, a prolific pioneer species. Sediment ammonium and grain size changed, but not organic carbon. Our results indicate that effects of wind intensity are not only restricted to the differential impacts on seagrasses, but on the physicochemical characteristics of the sediments. These changes, coupled with the slow colonization abilities ofThalassia, may prolong recovery of disturbed seagrass meadows. 
    more » « less
  4. Abstract Tropical cyclones play an increasingly important role in shaping ecosystems. Understanding and generalizing their responses is challenging because of meteorological variability among storms and its interaction with ecosystems. We present a research framework designed to compare tropical cyclone effects within and across ecosystems that: a) uses a disaggregating approach that measures the responses of individual ecosystem components, b) links the response of ecosystem components at fine temporal scales to meteorology and antecedent conditions, and c) examines responses of ecosystem using a resistance–resilience perspective by quantifying the magnitude of change and recovery time. We demonstrate the utility of the framework using three examples of ecosystem response: gross primary productivity, stream biogeochemical export, and organismal abundances. Finally, we present the case for a network of sentinel sites with consistent monitoring to measure and compare ecosystem responses to cyclones across the United States, which could help improve coastal ecosystem resilience. 
    more » « less